Dielectrophoretic separation of bioparticles in microdevices: a review.

نویسندگان

  • Talukder Z Jubery
  • Soumya K Srivastava
  • Prashanta Dutta
چکیده

In recent years, dielectrophoretic force has been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. This specific electrokinetic technique has been used for trapping, sorting, focusing, filtration, patterning, assembly, and separating biological entities/particles suspended in a buffer medium. Dielectrophoretic forces acting on particles depend on various parameters, for example, charge of the particle, geometry of the device, dielectric constant of the medium and particle, and physiology of the particle. Therefore, to design an effective micro-/nanofluidic separation platform, it is necessary to understand the role of the aforementioned parameters on particle motion. In this paper, we review studies particularly related to dielectrophoretic separation in microfluidic devices. Both experimental and theoretical works by several researchers are highlighted in this article covering AC and DC DEP. In addition, AC/DC DEP, which uses a combination of low frequency AC and DC voltage to manipulate bioparticles, has been discussed briefly. Contactless DEP, a variation of DC DEP in which electrodes do not come in contact with particles, has also been reviewed. Moreover, dielectrophoretic force-based field flow fractionations are featured to demonstrate the bioparticle separation in microfluidic device. In numerical front, a comprehensive review is provided starting from the most simplified effective moment Stokes-drag (EMSD) method to the most advanced interface resolved method. Unlike EMSD method, recently developed advanced numerical methods consider the size and shape of the particle in the electric and flow field calculations, and these methods provide much more accurate results than the EMSD method for microparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DC insulator dielectrophoretic applications in microdevice technology: a review.

Dielectrophoresis is a noninvasive, nondestructive, inexpensive, and fast technique for the manipulation of bioparticles. Recent advances in the field of dielectrophoresis (DEP) have resulted in new approaches for characterizing the behavior of particles and cells using direct current (DC) electric fields. In such approaches, spatial nonuniformities are created in the channel by embedding insul...

متن کامل

Separation of submicron bioparticles by dielectrophoresis.

Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of pa...

متن کامل

A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy.

In this review we present a unified approach for single cell dielectric spectroscopy. Impedance spectroscopy and dielectrophoretic cell sorting, current microtechnologies applied in electrical analysis of single cells are discussed based on their closely related physical principles. In addition, examples of microfluidic devices will be presented: a microfabricated flow cytometer for single cell...

متن کامل

Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms.

Microfluidic systems for cell separation and analysis have attracted increasing research activity over the past decades. In particular, the prospect of integrating all steps from sample preparation to assay readout in a single microfluidic cartridge, which is inserted into a compact, portable and potentially low-cost instrument, bears great promise to leverage next-generation diagnostic product...

متن کامل

Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electrophoresis

دوره 35 5  شماره 

صفحات  -

تاریخ انتشار 2014